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A linear stochastic delay differential equation of second order is studied that can be regarded as a Kramers
model with time delay. An analytical expression for the stationary probability density is derived in terms of a
Gaussian distribution. In particular, the variance as a function of the time delay is computed analytically for
several parameter regimes. Strikingly, in the parameter regime close to the parameter regime in which the
deterministic system exhibits Hopf bifurcations, we find that the variance as a function of the time delay
exhibits a sequence of pronounced peaks. These peaks are interpreted as delay-induced destabilization reso-
nances arising from oscillatory ghost instabilities. On the basis of the obtained theoretical findings, reinterpre-
tations of previous human motor control studies and predictions for future human motor control studies are
provided.
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I. INTRODUCTION

The effects of time delays on dynamical systems have
been studied extensively in recent years. This is appropriate
because many complex systems involve feedback of time-
delayed system variables. Time-delayed system variables are
fed back, for instance, in laser systems with mirrors �1–3�,
electronic devices �4�, chemical surface reactions �5�, hydro-
dynamical phenomena �6�, and bistable systems in general
�7,8�. Importantly, unstable systems can be controlled and
stabilized by means of time-delayed feedback mechanisms
�9�. In biology, time delays are frequently used to account for
maturation times �10,11�, cell division times �12�, and signal
processing as well as signal transmission times. In the latter
context, breathing �13�, tracking �14–18�, balancing �19–21�,
postural sway �22–24�, isometric force production �25,26�,
coordinated movement �27�, and neural network dynamics
�28–33� have been studied �see Ref. �34� for a review�. Time
delays also occur in the activation of muscles �35� and
muscle groups �36�.

Most analytical studies on time-delayed systems are con-
cerned with deterministic models �19,37,38�. A common
finding in those studies is that the introduction of a time
delay into a dynamical system that exhibits a stable fixed
point usually results in a destabilization of that fixed point at
a critical value of that delay, i.e., in a Hopf bifurcation
�37–39�. Deterministic models, however, are unsuitable for
modeling complex systems that involve fluctuating sources
�or noise sources�. Therefore, current research is also dedi-
cated to the analysis of stochastic models with time delays
�14,40–48�. In particular, for a linear first-order dynamical
system with time delay, the delay-induced Hopf bifurcation
has been studied in a stochastic framework �14,40–46,49�.
Accordingly, for subcritical delays the system exhibits a sta-
tionary Gaussian distribution. At the Hopf bifurcation point,
the variance of the Gaussian distribution becomes infinite

and the first moment oscillates. That is, the system does not
exhibit a stationary distribution any more. Looking at the
variance as a function of the time delay, there are three quali-
tatively different behaviors related to three different param-
eter regimes, see Fig. 1. First, if the system exhibits a Hopf
bifurcation, then the variance increases monotonically as a
function of the time delay until it becomes infinite at the
Hopf bifurcation point. Second, if the system does not ex-
hibit a Hopf bifurcation, then there are two possibilities: �i�
the variance increases to infinity when the time delay is in-
creased such that when the time delay becomes infinitely
large the variance becomes infinite, and �ii� the variance in-
creases monotonically and approaches a finite asymptotic
value when the time delay becomes infinitely large.

First-order dynamical systems may be interpreted as sys-
tems describing overdamped motions. However, there are
several systems in which inertia plays an important role and
that hence require a description in terms of second-order dif-
ferential equations with a time delay. Oscillatory systems are
a case in point. In this context, the impact of time delays on
noise-induced oscillations �50� and the desynchronization of
coupled oscillators by means of time-delayed feedback �51�
have been discussed. Delay-induced oscillatory modes and

FIG. 1. Qualitative functional dependencies of variances �p
2 on

time delays � for first-order dynamical models of the form �5�.
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limit cycles have also been examined in linear second-order
dynamical systems �52,53� and in second-order dynamical
systems involving piecewise constant time-delayed feedback
�54,55�. In the latter context, chaos has been studied as well
�56�. In the study of human motor control, the interplay be-
tween inertia and time delays has been studied in the context
of balancing �20� and postural control �24�. Furthermore,
tracking movements have been studied in terms of second-
order dynamical systems for tracking errors �57�. This ap-
proach proceeds as follows. If xh�t� denotes the position of a
limb �e.g., arm, hand� tracking a target and xt�t� denotes the
position of the target, then the two-dimensional vector re-
flecting position and velocity errors is defined by e= �xh

−xt , ẋh− ẋt�. By assuming that the tracking movements are
determined by the overall aim to minimize the error e, one
may then model the tracking movements directly in terms of
an evolution equation for e�t� rather than an evolution equa-
tion for xh�t�. The evolution equation for e�t� typically reads
ė�t�=Ae�t�+Be�t−��, where A and B are matrices and � cor-
responds to a neurophysiological delay. This error dynamics
model is a time-delayed second-order dynamical model
when it is written in terms of a single variable e�t�=xh�t�
−xt�t�. Furthermore, we would like to emphasize that man-
machine interactions in general, and teleoperating systems in
particular, often involve inertia terms �58�. These systems
can be conveniently described in terms of master-slave sys-
tems, where the human operator corresponds to the master
and the machine to the slave. Since the information transfer
between master and slave requires finite transmission times,
master-slave systems are appropriately modeled as time-
delayed dynamical systems. If we think of a simple but non-
trivial master-slave system, where the slave responds imme-
diately to the master, then the dynamics is governed by a
second-order evolution equation of the form ẍ�t�=c1ẋ�t�
+c2x�t�+c3ẋ�t−��+c4x�t−��, where ci are parameters, � cor-
responds to the transmission delay, and x�t� describes the
action of the master. For example, x�t� may describe the
position of a moving limb.

As stated in the preceding, for linear first-order dynamical
systems involving fluctuating forces and time delays, we
have a clear picture about the impact of time delays on sys-
tem stability and, in particular, we have a good understand-
ing of the stochastic behavior close to the Hopf bifurcation
point. The question is how the situation changes when inertia
plays a prominent role, as in human motor control systems.

Such time-delayed second-order dynamical systems will
satisfy stochastic delay differential equations of the form ẍ
= f�x ,x�t−�� , ẋ , ẋ�t−���+g�x���t�, where x�t� is the state
variable of interest and � corresponds to the time delay.
Roughly speaking, the function f here describes the deter-
ministic part of the dynamics, whereas the expression g�
describes the stochastic part and is composed of an ampli-
tude function g and a fluctuating part ��t�. Our objective will
be to study systems for which f is a linear function because
�i� such systems are of physical relevance as argued above,
�ii� systems of this kind describe linear approximations of
nonlinear systems, and �iii� such systems allow us to study
properties of second-order dynamical systems subjected to
fluctuations in an analytical approach. As far as the stochas-

tic part g� is concerned, we are dealing with additive noise if
g corresponds to a constant and with multiplicative noise if g
depends explicitly on x. Additive noise can be regarded as
thermal noise that arises from the contact of a system with its
environment. Additive thermal noise is present in all kinds of
nonisolated systems operating at finite temperatures and, in
particular, in biological systems �59�. Multiplicative noise
typically emerges in open systems involving fluctuating pa-
rameters and supports the functioning of a system �60�. In
terms of the aforementioned examples, we see that in most
studies additive noise sources have been considered. Multi-
plicative noise has been used to explore the origin of nega-
tive autocorrelations of time-delayed balancing movements
�20� and to study delay-induced dynamical instabilities of the
pupil light reflex �61�. In particular, as far as the stochastic
pupil dynamics is concerned, there is nowadays both experi-
mental and theoretical evidence that the pupil dynamics is
subjected to multiplicative noise �62–64�. Moreover, there is
some experimental evidence that there is a complex interac-
tion between the synaptic noise and the firing rate of human
motoneurons that is reminiscent of multiplicative noise �65�.
In view of the different origins of additive and multiplicative
noise, our best assumption for the time being is that complex
systems are subjected to both kinds of noise sources. How-
ever, as stated earlier, most studies focus on the impact of
thermal additive noise because it is reasonable to assume that
this kind of noise is indeed present in most systems and
because multiplicative noise systems often confront us with
problems that still cannot be solved with the �analytical�
techniques available so far. Therefore, in what follows, we
will only consider additive noise sources.

In short, the objective of our study is to explore the sto-
chastic behavior of linear second-order dynamical systems
with time delays and additive noise that feature Hopf bifur-
cation points. From the theory of nondelayed dynamical sys-
tems it is clear that in systems with two degrees of freedom
phenomena can be observed that are qualitatively different
from those observed in systems with a single degree of free-
dom. Therefore, we may expect to observe phenomena in a
stochastic second-order dynamical system with time delay
that are not observed in a time-delayed first-order dynamical
system. To anticipate, in the present study, we will show that,
in the case of stochastic time-delayed second-order dynami-
cal systems, the variance as a function of the time delay may
exhibit a sequence of pronounced peaks. That is, such sys-
tems may feature delay-induced destabilization resonances.

The manuscript is organized as follows. In Sec. II, we will
derive the stationary distribution of a linear second-order dy-
namical system involving a time delay and a fluctuating
force. In Sec. III, we will discuss in detail how the variance
of the stationary distribution depends on the time delay for
the two cases when there are Hopf bifurcation points �Sec.
III A� and when there are no Hopf bifurcation points �Sec.
III B�. Section IV is devoted to the phenomenon of delay-
induced destabilization resonances. Implications for human
motor control will be discussed in Sec. V both in terms of
reinterpretations of previous experimental studies and pre-
dictions for future studies.
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II. STATIONARY PROBABILITY DENSITIES

We consider the following linear stochastic delay differ-
ential equation of second order given by

mẍ�t� = − av�t� − bv�t − �� + F�x� + �Q��t� �1�

for t�0. For b=0, Eq. �1� corresponds to the Kramers equa-
tion �66�. The Kramers equation is used to describe the mo-
tion of a particle with mass m in terms of its position x�t�
�R and velocity v�t�= ẋ�t� under the impact of a damping
force −av, a conservative force F�x�, and a fluctuating force
��t�. Note that �Q��t� is the Langevin force with amplitude
Q which satisfies ���t��=0 and ���t���t���=��t− t��, where
��t− t�� is the Dirac delta function �66�. For b�0, Eq. �1�
accounts for possible memory effects in the damping force,
where � is the time delay. For this reason, we will refer to
Eq. �1� as a Kramers model with time delay. Note also that in
the following, we will consider only positive damping coef-
ficients a and b and assume that F is the conservative force
of a harmonic oscillator. That is, we put F�x�=−kx with k
�0 such that Eq. �1� describes a damped harmonic oscillator
with delay driven by an additive fluctuating force.

Introducing the momentum p�t�=mv�t�, we can rewrite
the above equation as a system of first-order differential
equations �78�

ẋ =
p

m
, �2�

ṗ = − kx�t� − ap�t� − bp�t − �� + �Q��t� . �3�

The initial condition is x�0�=x0, p�t�=��t� for t� �−� ,0�. In
order to determine the probability density P�x , p , t�= ���x
−x�t����p− p�t��� of the random variables p and x analyti-
cally, it is helpful to note that the delay Fokker-Planck equa-
tion �43,67� that corresponds to Eqs. �2� and �3� reads

�

�t
P�x,p,t� = −

�

�x

p

m
P�x,p,t� +

�

�p��kx + ap�P�x,p,t�

+ b	
�

p�P�x,p,t;p�,t − ��dp�

+

Q

2

�2

�p2 P�x,p,t� . �4�

Importantly, the proposed Kramers model with time delay
can be solved analytically �as we will show below�. Further-
more, for k=0, Eq. �3� corresponds to a first-order stochastic
delay differential equation

ṗ = − ap�t� − bp�t − �� + �Q��t� �5�

that has been studied extensively in the literature �see, e.g.,
Refs. �14,40–46��.

A. Gaussian functions

Since Eqs. �2� and �3� are linear with respect to x and p
and involve a fluctuating force � with Gaussian characteris-

tic functional, we conclude that the stationary distribution
Pst�x , p� is a Gaussian function. From Eqs. �2� and �3� it is
clear that the mean values of x and p vanish. Consequently,
Pst�x , p� assumes the form Pst�x , p��exp�c1x2+c2p2+c3px�.
In particular, the stationary distribution for p is the Gaussian
distribution

Pst�p� =� 1

2	�p
2���

exp�−
p2

2�p
2���
 . �6�

Note that �p
2��� represents the variance of p. Next, we exam-

ine the correlation between x and p. To this end, we multiply
Eq. �2� with x and take the average. We then have

�xẋ� =
�px�
m

. �7�

Since in the stationary case �xẋ�=0.5d�x2� /dt=0, we get
�xp�=0. Consequently, x and p are uncorrelated and the sta-
tionary solution of Eq. �4� is given by

Pst�x,p� =
1

2	
� 1

�p
2����x

2���
exp�− � x2

2�x
2 +

p2

2�p
2

 . �8�

In particular, we have Pst�x , p�= Pst�x�Pst�p�.

B. Variances

In order to obtain the explicit stationary distribution �8�,
analytical expressions for the variances of x and p must be
derived. To this end, we use the autocorrelation technique
that has been developed in previous works �40,41,48�. We
introduce the stationary autocorrelation function C�z�
= �p�t�p�t+z��st, where z�0 is a parameter and C�0�
= �p2�t�� is the variance of p. We also introduce the cross-
correlation function g�z�= �p�t�x�t+z��st, where g�0�=0. Us-
ing the autocorrelation and the cross-correlation function, we
can derive from the delay differential equations with noise
�2� and �3� the delay differential equations without noise

d

dz
g�z� =

1

m
C�z� ,

d

dz
C�z� = − kg�z� − aC�z� − bC�z − �� �9�

for z�0. Note that �p�t���t+z��st=0 for z�0 because of
causality �40�. Due to the symmetry property of the autocor-
relation function C�z�=C�−z�, the system �9� can be written
as

d

dz
g�z� =

1

m
C�z� ,

d

dz
C�z� = − kg�z� − aC�z� − bC�� − z� . �10�

Since C�0� is the variance of p, our objective is to solve the
system �10� for C�z� and g�z�. We derive the autocorrelation
function C�z� and the cross-correlation function g�z� by solv-
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ing Eq. �10� under appropriate constraints. Obviously, the
first constraint is given by

g�0� = 0. �11�

Integrating the delay Fokker-Planck equation �4� in the sta-
tionary case with respect to x and exploiting �xPst�x , p�dx
= �x�stPst�p�=0, we obtain

0 =
�

�p�apPst�p� + b	
�

p�Pst�p,t;p�,t − ��dp�

+

Q

2

�2

�p2 Pst�p� . �12�

Multiplying Eq. �12� with p2 and integration with respect to
p yields

aC�0� + bC��� =
Q

2
. �13�

Since g�0�=0, it follows from Eq. �9� that

� d

dz
C�z��

z→0+
= −

Q

2
. �14�

Differentiating Eq. �10� with respect to z and taking z→0+,
we obtain

� d2

dz2C�z��
z→0+

= −
k

m
C�0� − a

d

dz
C�0� + b

d

dz
C��� .

�15�

In order to derive the variance of x, we multiply the delay
Fokker-Planck equation �4� with the product px and integrate
the result with respect to x and p. Thus, we find

0 =
1

m
�p2�st − k�x2�st − a�xp�st − b�x�t�p�t − ���st. �16�

Since �xp�st=0, �p
2 = �p2�st and �x

2= �x2�st, from Eq. �16� we
obtain

�x
2 =

1

k
��p

2

m
− bg���� . �17�

Just as in previous works �40,41�, we need to distinguish
between different cases in order to solve the system �10�. For
b�a, we will use an autocorrelation function C�z� in the
form of sinusoidal functions. For b
a and b2�a2− �4k /m�,
we will use hyperbolic sine and cosine functions with
complex-valued arguments to form C�z�. In contrast, for b

a and b2
a2− �4k /m�, we will use hyperbolic sine and
cosine functions with real-valued arguments. If we introduce
�=�a2−b2 for b
a as an effective damping coefficient,
then we may say that the system is underdamped if b2�a2

− �4k /m�⇒�2− �4k /m�
0 and overdamped if b2
a2

− �4k /m�⇒�2− �4k /m��0. In the following, we will first
discuss the first case b�a, then the third �overdamped� case
b
a, a2−b2− �4k /m�
0, and finally the second �under-
damped� case b
a, a2−b2− �4k /m��0.

1. Case (1): b�a

Suppose that

C�z� = Ac cos���z − �/2�� + As sin���z − �/2�� , �18�

where Ac and As are real constants and the parameter � rep-
resents a frequency. To determine �, we first calculate g�z�
from Eq. �10�. Then, we have

g�z� =
1

m�
�Ac sin���z − �/2�� − As cos���z − �/2�� + g0�

�19�

with g0=Ac sin��� /2�+As cos��� /2�. It follows that

d

dz
C�z� = ��As cos���z − �/2�� − Ac sin���z − �/2��� ,

�20�

C�� − z� = Ac cos���z − �/2�� − As sin���z − �/2�� . �21�

Substituting Eqs. �18�–�21� into Eq. �10� and collecting the
amplitudes of the sine and cosine functions, we get

��1 −
k

m�2
As = − Ac�a + b� , �22�

��1 −
k

m�2
Ac = As�a − b� . �23�

Solving for �, we obtain two frequencies

�1,2 =
�b2 − a2

2
±�b2 − a2

4
+

k

m
. �24�

Next, we use the superposition of the particular solutions
�18� with frequencies �1 and �2 resulting in

C�1��z� = C1
�1� cos��1z� + e1

�1� sin��1z� + C2
�1� cos��2z�

+ e2
�1� sin��2z� , �25�

where C1
�1�, C2

�1�, e1
�1�, and e2

�1� are parameters. Using the con-
straints �11�–�15�, after some detailed calculations, we find
e1

�1�=−Q�1 /2��1
2−�2

2� and e2
�1�=−e1

�1��2 /�1, and

C1
�1���� =

Q

2Z�1�����a − b
�1

2 cos��1�� − �2
2 cos��2��

�1
2 − �2

2

− bB�1����
b�2 sin��2�� − �2

2 + �k/m�
a + b cos��2�� 
 �26�

C2
�1���� =

bQB�1����/2 − �a + b cos��1���C1
�1����

a + b cos��2��
, �27�

where

B�1���� =
1

b
+

�1 sin��1�� − �2 sin��2��
�1

2 − �2
2 , �28�
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Z�1���� = b�1 sin��1�� − �1
2 + �k/m� − �a + b cos��1��

a + b cos��2��


�b�2 sin��2�� − �2

2 + �k/m�� . �29�

The parameter C1
�1���� can equivalently be expressed as �see

Appendix A�

C1
�1���� =

Q�1�

2��1
2 − �2

2�
�1 + b�−1 sin��1��

a + b cos��1�� 
 �30�

with �=��b2−a2�. From Eq. �25�, it follows that the variance
of p is

�p
2�1���� = C1

�1���� + C2
�1���� . �31�

The variance of x is given by Eq. �17� with g���=g�1���� and

g�1���� =
1

m
�C1

�1����
�1

sin��1�� +
C2

�1����
�2

sin��2��

+
Q

2��1
2 − �2

2�
�cos��1�� − cos��2���
 . �32�

2. Case (3): b
a, b2
a2− „4k /m…

In this case, we have b
a and a2−b2�4k /m. A solution
of Eq. �9� is given by

C�z� = Ac cosh���z −
�

2

� + As sinh���z −

�

2

� , �33�

which can be proven by substituting Eq. �33� into Eq. �9�. In
doing so, we can also determine the frequency � and find

�1,2 =
�a2 − b2

2
±�a2 − b2

4
−

k

m
. �34�

Consequently, the frequencies �1,2 are real-valued and the
general solution of Eq. �9� can be cast into the form

C�3��z� = C1
�3� cosh��1z� + e1

�3� sinh��1z� + C2
�3� cosh��2z�

+ e2
�3� sinh��2z� . �35�

Exploring the constrains �11�–�15�, we obtain
e1

�3�=−Q�1 /2��1
2−�2

2� and e2
�3�=−e1

�3��2 /�1 and

C1
�3���� =

Q

2Z�3�����a − b
�1

2 cosh��1�� − �2
2 cosh��2��

�1
2 − �2

2

− bB�3����
�2

2 + �k/m� − b�2 sinh��2��
a + b cosh��2�� 
 , �36�

C2
�3���� =

bQB�3����/2 − ��a + b cosh��1���C1
�2�����

a + b cosh��2��
�37�

where

B�3���� =
1

b
+

�2 sinh��2�� − �1 sinh��1��
�2

2 − �1
2 , �38�

Z�3���� = �1
2 + �k/m� − b�1 sinh��1�� − �a + b cosh��1��

a + b cosh��2��


��2

2 + �k/m� − b�2 sinh��2��� . �39�

Note that by a detailed calculation similar to the one carried
out in Appendix A, one can show that the parameter
C1

�3���� can be transformed into

C1
�3���� =

Q�1�

2��1
2 − �2

2�
�1 + b� sinh��1��

a + b cosh��1�� 
 �40�

with �=��b2−a2�. From Eq. �35� and �p
2�3�=C�3��0� it can be

appreciated that �p
2�3� is given by

�p
2�3���� = C1

�3���� + C2
�3���� , �41�

whereas �x
2�3� is given by Eq. �17� with g���=g�3���� and

g�3���� =
1

m
�C1

�3����
�1

sinh��1�� +
C2

�3����
�2

sinh��2��

+
Q

2��2
2 − �1

2�
�cosh��1�� − cosh��2���
 . �42�

3. Case (2): b
a, b2�a2− „4k /m…

Just as in the previous case, we have b
a, but now with
a2−b2
4k /m. Nevertheless, by substituting the autocorrela-
tion function �33� into Eq. �9�, one can show that Eq. �33� is
a solution of Eq. �9�. That is, we are dealing again with
hyperbolic functions. However, from Eq. �34� and a2−b2


4k /m, it follows that the frequencies are now complex
variables. They are complex conjugates �1,2=u±vi with u
=�a2−b2 /2 and v=��k /m�− ��a2−b2� /4�. A detailed analy-
sis �see Appendix B shows that the variance of p is given by

�p
2�2���� = −

Q

4uvA1
�A2A3 + b sinh�u��sin�v��A4� , �43�

where A1 , . . . ,A4 are functions that depend on � like

Ai = Ai�cos�v��,sin�v��,cosh�v��,sinh�v��� . �44�

The variance of x is given by Eq. �17� with g���=g�2���� and

g�2���� =
1

m
�2 Re�C1

�2� sinh��1��
�1


 −
Q

4uv
sinh�u��sin�v��
 .

�45�

Note that Re�¯� is the real part of �¯�.

4. Special cases

Finally, we can derive the variances �p
2 and �x

2 for the
special cases a=b and k=0, see Appendix C. In particular,
for k=0, we reobtain the results that were previously derived
for the first-order delay differential equation �5�.

5. Examples

At this juncture it is useful to illustrate the stationary
probability densities Pst�p� and Pst�x� for fixed parameters m,
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k, a, and � and for several values of b. To this end, we use
the analytical expressions derived in the preceding and re-
sults obtained from numerical simulations. As far as the nu-
merics is concerned, we solved the Kramers equations �2�
and �3� by an Euler forward method �66�. In the simulation,
the random variables x and p were generated using a fixed
time step of 10−2. The fluctuating force � was calculated
based on a Gaussian random generator �Box-Muller algo-
rithms�. The simulations were carried out for 105 realizations
and 104 integration steps for each realization. The results
shown in Fig. 2 represent the cases b�a, b=a, a2�b2

�a2− �4k /m�, and b2
a2− �4k /m�, respectively.

III. CRITICAL DELAYS AND LONG TIME DELAYS

We consider the delay as the control parameter of the
system �2� and �3�. The objective is to study the impact of
this control parameter on the dynamical behavior of the sys-
tem �2� and �3�. For b�a, the stability is determined by
critical delays at which Hopf bifurcations occur. In contrast,
for b
a there are no Hopf bifurcations.

A. Critical delays, Hopf bifurcations, and double Hopf
bifurcations

1. Deterministic system

The deterministic equations that correspond to the Kram-
ers equations �2� and �3� for Q=0 are given by

ẋ =
p

m
, �46�

ṗ = − kx�t� − ap�t� − bp�t − �� . �47�

Such second-order dynamical systems with time delays have
been studied in detail, for example, in Refs. �52,53�. The
specific second-order dynamical model given by Eqs. �46�
and �47� has been analyzed in Refs. �68–70�. Let � be an
eigenvalue of the system. The characteristic equation �19� is
then defined by

�2 + a� +
k

m
+ b� exp�− ��� = 0. �48�

The stability is changed due to a Hopf bifurcation if there is
a critical delay �c such that �=�i is a purely imaginary root
of Eq. �48�, where � is a positive real value. Substituting �
=�i into Eq. �48�, we find

cos���� = −
a

b
, �b sin���� = �2 −

k

m
. �49�

For a�b�0, it has been shown that all roots � of Eq. �48�
have negative real parts for all � �68–70�. That is, critical
delays do not exist.

Next, let us consider the case b�a. In this case, the criti-
cal delays at which purely imaginary roots of Eq. �48� exist
are given by �68–70�

�c

= ��u,j =
1

�1
�2j	 + arccos�−

a

b

� , �1

2 − �k/m� � 0

�s,j =
1

��2���2j + 2�	 − arccos�−
a

b

� , �2

2 − �k/m� 
 0�
�50�

with j=0,1 ,2 ,3 , . . . and �1,2= i�1,2, where the Hopf frequen-
cies �1,2 are defined by Eq. �24�. Furthermore, it has been
shown that the delays �u,i and �s,i constitute a monotonically
increasing sequence of real numbers

�u,0 
 �s,0 
 �u,1 
 �s,1 
 ¯ 
 �u,n−1 
 �s,n−1 
 �u,n

�51�

up to a particular integer n. For instance, in Fig. 3, we plot
�u,i and �s,i for fixed parameters b, k, and m as a function of
the parameter a. The structure of the resulting diagram has
been referred to as a “Christmas tree” �53,71�. In Fig. 3 �left
panel� for relatively small parameters a with a
a1

*�1.46,
we have n=0 �i.e., the inequality �51� consists only of �u,0�.
For intermediate parameters a with a1

*
a
a2
*�1.57, we

have n=1 �i.e., the inequality �51� consists of �u,0 ,�s,1 ,�u,1�,
see also panel �b� of Fig. 3. For relatively large parameters a
with a2

*
a
b, we have n=2, see Fig. 3�b�. In the limit a
→b−0, the upper and lower branches of �c given by �u,j and
�s,j converge to

FIG. 2. Stationary probability densities of the system �2� and �3�
represented by various values of parameter b while the other pa-
rameters are fixed. Symbols represent the numerical simulation and
the solid lines represent the analytical results given by Eq. �8�. The
parameters are fixed by a=2, k=0.8, �=0.2, Q=1, and m=1. Using
b=8,2 ,1, the left panels show the stationary probability densities
which, for the b values used, correspond to b�a �diamonds�, b
=a �circles�, and a2�b2�a2− �4/km� �stars�, respectively. Using
b=1,0.5,0, the right panels show the stationary probability densi-
ties which, for the b values used, correspond to a2�b2�a2

− �4k /m� �stars�, b2
a2− �4k /m� �triangles�, and b=0 �squares�,
respectively.
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�c�a = b� = �u,j = �s,j =
	�1 + 2j�

�0
�52�

with j=0,1 ,2 ,3 , . . . and �0=�k /m. That is, the right hand
side boundary of a stability diagram in the a-� plane consists
of a set of vertically arranged and equally spaced points
�b ,T0 /2�, �b ,3T0 /2�, �b ,5T0 /2�, … with T0= �2	� /�0, see
panels �c� and �d� in Fig. 3. These “ladder points” are closely
related to the destabilization resonances that will be dis-
cussed below.

For �� ��u,j� and �=�1, it has been shown that
d Re��� /d��0 �69�. That is, all roots of Eq. �48� cross the
imaginary axis from left to right. Conversely, for �� ��s,j�
and �= ��2�, the relation d Re��� /d�
0 holds. That is, all
roots of Eq. �48� cross the imaginary axis from right to left.
With these results in hand, one can determine the stable re-
gions of the fixed point �x , p�= �0,0�. The fixed point is
stable for delays � with 0
�
�u,0 and �s,j 
�
�u,j+1 for j

n, and unstable for delays � with �u,j 
�
�s,j for j
n
�68–70�. For ���u,n, the fixed point is unstable and does not
become stable again. Roughly speaking, the fixed point be-
comes unstable at critical delays �u,j and stable again at criti-
cal delays �s,j.

From inequality �51�, it follows that the stability of the
fixed point switches 2n+1 times as � is increased. In other
words, as the time delay is increased, we observe a destabi-
lization, then a restabilization, then a destabilization, and so
on. As illustrated in Refs. �52,53�, the sequence of stability
switches breaks off due to double Hopf bifurcation points.
From Eq. �50�, it follows that the Hopf frequencies �1 and

��2� become equivalent if the two branches of the Hopf bi-
furcation points shown in Fig. 3 intersect. That is, if we have
�u,j+1=�s,j for a particular parameter a. In Fig. 3�a�, such
double Hopf bifurcation points are shown. Two of them can
be used to distinguish between parameter domains for which
one, three, or five switches in stability occur.

2. Stochastic system

It is known that stationary distributions of linear stochas-
tic delay differential equations, such as the Kramers equa-
tions �2� and �3�, exist if and only if all roots of the charac-
teristic equation �48� have negative real parts �41,44,47�.
Consequently, for a�b stationary distributions of the system
�2� and �3� exist for all ��0. For b�a, stationary distribu-
tions exist for delays � for which 0��
�u,0 or �s,j 
�

�u,j+1 hold, with j
n. Otherwise, they do not exist. In
particular, the moments �x� and �p� of Eqs. �2� and �3� satisfy
the evolution equations �46� and �47�. Consequently, the
stable stationary points �x�st= �p�st=0 of these evolution
equations become unstable at the critical delays �u,j and
stable again at critical delays �s,j for j=0,1 , . . . ,n.

3. Variances

Here we restrict ourselves to the case b�a. We will show
that the variances �p

2 and �x
2 become infinite at the critical

delays �u,j for j�n and become finite at critical delays �s,j
for j
n. In this case, we are dealing with the variances
given by Eqs. �17� and �31�. First, we note that from Eq. �30�
it can be appreciated that C1

�1���� becomes infinite for

�* =
1

�1
arccos�−

a

b

 . �53�

Since ��2�
�1, it follows that the denominator a
+b cos��2�� of Eq. �27� is different from zero for �0,�*�.
Therefore, C2

�1���� is finite for �0,�*�. For �→�*, the param-
eter C2

�1���� is still finite. The reason for this is that C1
�1����

tends to infinity for �→�* like 1/ �a+b cos��1���, which im-
plies that the product �a+b cos��1���C1

�1���� is finite for �

→�*. In sum, in the limit �→�* the variance �2
2�1����=C1

�1�


���+C2
�1���� tends to infinity because C1

�1���� tends to infin-
ity and C2

�1���� is finite. Comparing Eqs. �50� and �53�, we
see that �*=�u,0. The same argument holds for critical delays
�u,j for 0
 j�n. In the limit �→�u,j −0, the parameter C2

�1�


��� is finite but the parameter C1
�1���� becomes infinite,

which implies that �2
2�1���� tends to infinity. We now turn to

the critical delays �s,j. Using Eq. �27�, we see that the param-
eter C2

�1���� is proportional to 1/ �a+b cos��2���. By a similar
reasoning, we conclude that in the limit �→�s,j +0 the pa-
rameter C1

�1���� is finite but the parameter C2
�1���� becomes

infinite. Consequently, if the system is in a parameter domain
with a finite variance and we decrease the delay toward a
critical delay �s,j, then the variance �p

2�1���� tends to infinity.
It is useful to elucidate the divergence of the variances �p

2

and �x
2 at the critical delay �c=�u,0 with an example �illus-

trations of the behavior for ���u,0 will be presented in Sec.
IV�. In Fig. 4, the variances �p

2 and �x
2 have been plotted as

FIG. 3. Stability diagram in the a-� plane for the case b�a.
Panel �a�: the parameters Q=m=k=1 and b=1.6 are fixed, whereas
the parameter a is varied from 0 to b. Three double Hopf bifurca-
tion points can be found at approximately �1.30, 8.53�, �1.46, 5.98�,
and �1.57, 12.39�. Panel �b�: a detail of panel �a� for a� �1.5,1.6�.
Panel �c�: stability diagram revealing �right hand side� boundary
points given by a→b−0 and �c=	�1+2j� /�0. Parameters: Q=m
=b=1 and k=10. Panel �d�: a detail of panel �c�.
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functions of the delay � for a system with b�a. Both ana-
lytical and numerical results are shown. In Fig. 4, the diver-
gence of the variances in the limit �→�u,0 is clearly visible
�79�.

Finally, we consider the special case b=a. For b=a, we
see from Eq. �C8� that at

�* =
	

�0
�1 + 2j� �54�

with j=0,1 ,2 ,3 , . . . the variance �p
2 becomes infinite. Fur-

thermore, from Eq. �C9� it then follows that �x
2 becomes

infinite for �=�*. Comparing Eqs. �52� and �54�, we see that
the equivalence �*=�c holds, which means that the variances
become infinite at the critical delays of the deterministic sys-
tem. In Fig. 5, we give an example of the behavior of a
system with b=a at the first critical delay �c=	 /�0. We see
that the variances �p

2 and �x
2 are monotonically increasing

functions of the delay � and tend to infinity for �→�c.

B. Long time delays

As argued in Sec. III A, there is no critical delay if a
�b, which implies that stationary distributions of the Kram-
ers equations �2� and �3� exist for arbitrary delays and the
variances �p

2 and �x
2 are finite. In fact, for b2
a2− �4k /m�,

the limit of the variances for �→� can be calculated analyti-
cally. To this end, we replace sinh��i�� and cosh��i�� by
exp��i�� /2 for i=1,2 in Eqs. �36�, �37�, and �43�. Thus, we
obtain

lim
�→�

�p
2�3���� =

Q

2��1 + �2�
. �55�

Using this result, from Eqs. �17�, �42�, and �45� the limit
�x

2�3� for �→� reads

lim
�→�

�x
2�3���� =

Q

2km��1 + �2�
. �56�

Substituting in Eqs. �55� and �56� the complex frequencies
�1,2=u± iv introduced in Sec. II B, we obtain for the case
a2�b2�a2− �4k /m�, the asymptotic values

lim
�→�

�p
2�2���� =

Q

2�
�57�

and

lim
�→�

�x
2�2���� =

Q

2km�
�58�

with �=��b2−a2�. In Figs. 6 and 7, both analytical and nu-
merical results for the variances �p

2 and �x
2 and the

asymptotic values computed from Eqs. �55�–�58� are plotted
for a2�b2�a2− �4k /m� and b2
a2− �4k /m�, respectively.
From these figures, it is evident that for �→� the variances
of x and p approach finite asymptotic values that are given
by Eqs. �55�–�58�.

FIG. 4. Variances for the case b�a versus delay. The diamonds
show simulation results and the lines show analytical results given
by Eqs. �17� and �31�. The parameters are a=0.1 and b=k=m=Q
=1, which implies that the critical delay is about 1.04.

FIG. 5. Variances for the case b=a versus delay. The diamonds
show simulation results and the lines show analytical results given
by Eqs. �C8� and �C9�. The parameters are a=b=Q=m=1 and k
=10, which yields a critical delay of about 0.99.

FIG. 6. Variances at large delays for the underdamped case with
b
a and b2�a2− �4k /m�. The diamonds show the simulation re-
sults and the lines show the analytical results given by Eqs. �17�,
�43�, and �45�. Parameters: a=2 and b=k=m=Q=1.

FIG. 7. Asymptotic behavior of the variances for the over-
damped case with b
a and b2
a2+ �4k /m�. The diamonds show
the simulation results and the lines show the analytical results given
by Eqs. �17�, �41�, and �42�. Parameters: a=1.2, b=m=Q=1, and
k=0.1.
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IV. DELAY-INDUCED DESTABILIZATION RESONANCES

A. Destabilization resonances due to oscillatory ghost
instabilities: connections with “Christmas tree” stability

diagrams

As stated earlier, from Eqs. �26� and �27� �as well as from
Eqs. �C8� and �C9��, we see that for b�a the variances �p

2

and �x
2 are composed of trigonometric functions given by

cos��i�� and sin��i�� with i=1,2. This implies that for b
�a, the variances �p

2 and �x
2 exhibit some kind of oscillatory

behavior. This oscillatory behavior, however, is only relevant
in the stability domains 0
�
�u,0 and �s,j 
�
�u,j+1 for j

n. In order to reveal the oscillatory properties of the vari-
ances �p

2��� and �x
2���, we may plot them for delays larger

than �u,0. Figure 8 illustrates a system for b�a involving
two stability domains. The rising edge in the second stability
domain can be regarded as some kind of periodic repetition
of the rising edge of the first stability domain. The two sta-
bility domains correspond to the stability domains revealed
by the Christmas tree stability diagram shown in panel �b� of
Fig. 3 . That is, if we increase the time delay along the y axis
of the diagram in panel �b� of Fig. 3, we drive the determin-
istic system through a sequence of destabilization and resta-
bilization points. Simultaneously, as shown in panels �a� and
�b� of Fig. 8 , we drive the variances �x

2 and �p
2 of the cor-

responding stochastic system through a sequence of singu-
larities that mark off the parameter domains in which station-
ary distributions exist.

Figure 8 also illustrates a time-delayed system for b=a.
As shown in panels �c� and �d� �and as we anticipate from
Eqs. �C8� and �C9�� the variances �p

2 and �x
2 are periodic

functions with a period T0=2	 /�0. Singularities correspond
to the critical delays �c= �1+2j�T0 /2 defined by Eq. �52�.
These singularities correspond to the ladder points that con-
stitute the right hand boundary of the Christmas tree stability
diagram shown in Fig. 3�d�.

Next we consider the underdamped case. For parameters
a and b that satisfy b
a but are still located close to the
bifurcation line b=a in the parameter space �a ,b�, we obtain
variances with very pronounced oscillations, see Fig. 9 .
Comparing Figs. 8 and 9, we see that the peaks shown in Fig.
9 are remnants or ghosts of the singularities shown in Fig.
8�b� and identify points in the parameter space �a ,b ,� ,k ,m�
where certain matching conditions are satisfied. Conse-
quently, we may refer to them as resonances. Since they
represent maxima of the variances �p

2 and �x
2, they describe

conditions of maximal destabilization and may be referred to
as destabilization resonances. The destabilization resonances
are related to the oscillatory instability points �Hopf bifurca-
tion points� that exist in the parameter domain b�a. For this
reason, we may say that the destabilization resonances are
due to oscillatory ghost instabilities �80�. Alternatively, a
simple interpretation of the resonance peaks can be given in
terms of the Christmas tree diagrams of the corresponding
deterministic systems. Accordingly, the peaks are the rem-
nants of the ladder points �b , �1+2j�T0 /2� with j
=0,1 ,2 ,3 , . . ..

It should be mentioned that for k=0, destabilization reso-
nances cannot be observed �see also Fig. 1�. Therefore, we
may say that they are caused by the influence of the restoring
force −kx. This becomes also clear from Eq. �34� because for
b�a the frequencies �1,2 can be expressed in terms of �0
=�k /m. That is, the frequencies are dominated by the param-
eter k and the restoring force −kx.

The envelope of the oscillatory behavior of the functions
�p

2 and �x
2 for a2�b2�a2− �4k /m� is determined by the

FIG. 8. �a� Variance of p and �b� variance of x for b�a in the
case of a re-entrant bifurcation. There are two stable domains in
which the variance is finite: �0,�u,0� and ��s,0 ,�u,1�. For ���u,1

stationary distributions do not exist. Vertical bars correspond to �u,0,
�s,0, and �u,1. The parameters: a=1.5, b=1.6, and Q=m=k=1. �c�
Variance of p and �d� variance of x for b=a. Singularities occur at
regular intervals. Parameters: a=b=Q=m=1 and k=10.

FIG. 9. �a� Variance of p, �b� variance of x, �c� energy U���, and
�d� entropy S��� with respect to time delay for the underdamped
case with b
a and b2�a2− �4k /m�. Parameters: a=1.01, b=Q
=m=1, and k=10.
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sinh�u�� and cosh�u�� terms occurring in Eqs. �43� and �44�.
If the parameters b and a deviate further from the critical line
b=a, that is, if we continue to decrease b to a fixed value of
a, then the hyperbolic functions become more dominant such
that the oscillatory behavior vanishes and we are left with
variances �p

2 and �x
2 that look qualitatively as shown in Fig.

10: the variance �p
2 still exhibits a maximum but there are no

further peaks as shown in panel �a� of Fig. 9. In view of the
presence of a maximum, we may say that the variance is
characterized by an overshoot. Such an overshoot does not
require that the expression for �p

2 involves trigonometric
functions. As shown in Fig. 10, in the overdamped case, that
is, for b2
a2− �4k /m�, we also observe an overshoot in the
graph of the variance �p

2, although the function �p
2��� does

not involve trigonometric functions, see Eqs. �36�–�39�. Fi-
nally, when the impact of the time-delayed feedback loop
becomes small, then it seems that the overshoot behavior
vanishes and the variances �p

2 and �x
2 increase monotonically

with the time delay, see Fig. 11.

B. Energy and entropy

The characteristic features of the variances �p
2 and �x

2

carry over to the mean energy U= �p2 / �2m�+kx2 /2� and to
the entropy S=−�P ln Pdxdp of the time-delayed systems
given by Eqs. �2� and �3� �note that we put the Boltzmann
constant equal to unity�. Using the Gaussian distribution �8�,
we get

U��� = � kx2

2
� + � p2

2m
� =

k�x
2

2
+

�p
2

2m
�59�

and

S��� = −	 Pst�x,p�ln Pst�x,p�dpdx = 1 + ln 2	 + ln ��x
2�p

2.

�60�

Accordingly, the resonance peaks of �p
2 and �x

2 correspond to
peaks in the functions U and S, see Fig. 9. Likewise, over-
shoots can also be found in the functions U and S, see, for
example, Fig. 10. Finally, when the impact of the delay term
becomes small, it seems that mean energy and entropy in-
crease monotonically with the time delay, see Fig. 11.

V. IMPLICATIONS FOR HUMAN MOTOR CONTROL

As stated in the introduction, there are various human
motor control systems that can be regarded as time-delayed
second-order dynamical systems. In view of the theoretical
results discussed in the previous sections, we will re-evaluate
some experimental results that have been obtained in previ-
ous studies on human motor control and derive predictions
for future studies. Inevitably, this section has a speculative
character because previous experiments were not conducted
to test hypotheses derived from the Kramers model �2� and
�3�, while hypotheses for possible future studies are specula-
tive by definition.

A. Reinterpretations of previous human motor control studies

In what follows, we will re-evaluate experimental data of
two experiments on human tracking with time-delayed visual
input carried out by Tass et al. �15� and Langenberg et al.
�16�, respectively. The experimental setup is essentially as
follows. A subject sits in front of a screen on which a moving
target is displayed that oscillates with a frequency f . The
subject’s task is to track the target with the arm by perform-

FIG. 10. �a� Variance of p, �b� variance of x, �c� energy U���,
and �d� entropy S��� with respect to time delay for the overdamped
case with b
a and b2
a2− �4k /m�. Parameters: a=2, b=Q=m
=1, and k=0.74.

FIG. 11. �a� Variance of p, �b� variance of x, �c� energy U���,
and �d� entropy S��� with respect to time delay for the overdamped
case b
a, b2
a2− �4k /m�. The parameters: Q=1, m=1,k=0.1,
a=1.2, and b=0.0001.
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ing oscillatory arm movements. Vision of hand and arm is
excluded. However, the arm position is displayed on the
screen and the subject needs to match the feedback signal
with the target signal. In order to manipulate the time delay
involved in the visual feedback, the display of the arm posi-
tion is retarded by a delay �. That is, the feedback signal
displayed at time t corresponds to the arm position at time
t−�. The tracking movements are described in terms of the
phase difference given by the difference of the phase of the
feedback signal and the phase of the target signal.

Tass et al. found qualitatively different dynamical behav-
iors of tracking movements for different delays. For small
time delays, tracking movements could be explained by
means of a dynamical system with a stable fixed point (re-
gime labeled �i� in Ref. �15�). For time delays larger than
particular critical delays tracking movements could be re-
garded as the outcomes of a dynamical system exhibiting an
unstable fixed point and various attractors such as limit
cycles, chaotic attractors, and running solutions (regimes la-
beled �ii� and �iii� in Ref. �15�). For even larger time delays,
Tass et al. found that tracking movements were related to a
dynamical system that exhibits stable fixed points in some
trials and unstable fixed points in others �regime labeled �iv�
in Ref. �15��. These results are summarized in Fig. 12�a� .
While Tass et al. explained these findings in terms of a non-
linear delay differential equation that is of first order in time,
one may alternatively interpret the results in terms of the
Kramers model �2� and �3�. Accordingly, the transitions be-
tween stable and unstable fixed points found in some trials
may result from an error dynamics that satisfies Eqs. �2� and
�3� and operates in the parameter domain b�a. As illustrated
in Fig. 12�a�, a delay-induced sequence of destabilization
and restabilization of a motor control system is at the heart of

the second-order dynamical time-delayed model �2� and �3�.
The fact that only in some trails a restabilization was ob-
served in the experiment by Tass et al. have been caused by
nonlinearities that are not accounted for by the model �2� and
�3�. Alternatively, one may assume that the parameters of the
model �2� and �3� and, in particular, the parameters a and b,
vary on a slow time scale. That is, they may vary from trial
to trial, such that in some trials delay-induced re-entrant tran-
sitions to stable fixed points could be observed but not in
others.

Langenberg et al. studied how the variability of tracking
movements depends on the time delay of the visual feed-
back. The variability was measured in terms of the root mean
square �RMS� error. For small movement angles, we can
assume that the RMS is proportional to the variance of the
position x of the model �2� and �3� provided that Eqs. �2� and
�3� describe the error dynamics of the tracking movements.
Langenberg et al. primarily focused on the relationship be-
tween variability and the relative delay defined by the delay
divided by the period of the target oscillation. It is clear from
the experimental setup that the variability must become
minimal if the delay is an integer multiple of the period, that
is, if the relative delay is 100 percent of the period of the
target oscillation, 200 percent, and so on. These kinds of
variability minima are induced by the relative delay and are
peculiarities of oscillatory tracking dynamics. Given our in-
terpretation of Eqs. �2� and �3� as a model for error dynam-
ics, we are primarily interested in an effect of the absolute
time delay on performance variability. Since Langenberg et
al. also varied the tracking frequency, they reported, as a
by-product of their study, the effect of the absolute time de-
lay on the variability. For a fixed relative delay, they evalu-
ated the tracking movements for different target frequencies,

FIG. 12. Reinterpretation of
experimental results found in two
previous studies on tracking
movements under time-delayed
visual feedback: a study by Tass et
al. �15� �a� and a study by Lan-
genberg et al. �16� �b�. Here, a*

=�a2−4k /m. See text for details.
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that is, for different absolute time delays. Fig. 12 �b� sum-
marizes the experimental findings for this case. For a fixed
relative delay of 60 percent, they found that the variability
increased as a function of the absolute time delay. For a fixed
relative delay of 105 percent, they found that the variability
exhibits a minimum at a particular absolute time delay. Both
findings can easily be explained in terms of the time-delayed
Kramers model �2� and �3�. Accordingly, in the case of the
60 percent condition, Langenberg et al. observed the error
dynamics �2� and �3� for parameters a and b with b
a* and
a*=�a2− �4k /m�. In contrast, in the case of the 105 percent
condition, the error dynamics �2� and �3� for a�b�a* was
observed.

In sum, our re-evaluation demonstrates that some basic
experimental observations reported in the literature on time-
delayed tracking movements can be related to the three
qualitatively different parameter regimes of the Kramers
model �2� and �3�. We would like to reiterate, however, that
this re-evaluation needs to be confirmed by future studies
that are tailored to test the specific hypothesis made by the
time-delayed Kramers model �2� and �3� when interpreted as
a model for the error dynamics of tracking movements.
Therefore, we will discuss next some predictions for further
studies on human motor control that can be derived from the
Kramers model �2� and �3�.

B. Predictions for future human motor control studies

1. Time-delayed systems with bÐa: re-entrant bifurcations and
divergences

When the time delay � is gradually increased, the deter-
ministic second-order dynamical system given by Eqs. �46�
and �47� can undergo a sequence of bifurcations. It can be-
come unstable at critical delays �u,j and stable again at delays
�s,j. In such a case, we are dealing with re-entrant bifurca-
tions. Our previous analysis has shown that at the boundaries
of the stability domains, the variability of the corresponding
stochastic system defined by our Kramers model �2� and �3�
diverges. The implications of this observation are at least
twofold.

First, the stability of human motor control systems is of-
ten determined by studying simultaneously the variability of
the systems in the unperturbed stationary case and the re-
sponse of the systems to perturbations �72–75�. Our analysis
links these two properties, at least qualitatively. While the
relaxation dynamics is related by the real parts of the eigen-
values that can be computed from the characteristic equation
�48�, the variability can be expressed in terms of the vari-
ances �p

2 and �x
2. Since the variances diverge when there is

an eigenvalue with vanishing real part, we conclude that
close to Hopf bifurcation points changes in the control pa-
rameter � imply that either the relaxation dynamics slows
down and the variability increases or the relaxation dynamics
becomes faster and the variability decreases. That is, there is
a strong negative correlation between the decay rate of per-
turbations and the variability. In fact, such a negative corre-
lation is well known for nondelayed systems. Here, critical
slowing down and critical fluctuations, two generic aspects

of equilibrium and nonequilibrium phase transitions �59�,
usually occur simultaneously.

The second important issue concerns the phenomenon of
critical fluctuations in the context of nonlinear time-delayed
motor control systems. Close to stable fixed points, nonlinear
systems may be studied in terms of their linearized counter-
parts. The evolution equations of such linearized time-
delayed motor control systems may correspond to Eqs. �2�
and �3�. Our analysis then predicts that at the Hopf instability
points, the variances of the linearized systems tend to infin-
ity. This result will carry over to the original nonlinear sys-
tems. However, just as in the case of dynamical systems
without delays �59�, if nonlinearities come into play, the vari-
ances may not diverge. In sum, in the case of nonlinear time-
delayed motor control systems, the variances �p

2 and �x
2 are

likely to increase dramatically at Hopf bifurcation points al-
though they are unlikely to become infinite.

2. Time-delayed systems with b
a: resonances and overshoots

Our results also have several important implications for
time-delayed human motor control systems that are stable for
all time delays ��0. First, the “rule of thumb” which states
that increasing the time delay of a system makes the system
more unstable and increases the variability has been falsified.
Increasing a time delay may result in an increase or a de-
crease of the performance variability when measured in
terms of the variances �p

2 and �x
2.

Second, for systems that exhibit destabilization reso-
nances, we conclude that the performance accuracy becomes
sensitive to the time delays involved. That is, small changes
in the magnitudes of the time delays can lead to large
changes in performance accuracy and variability. Conse-
quently, performance can become highly sensitive to all fac-
tors that determine the time delays. In particular, this con-
cerns neurophysiological time delays determined by factors
such as signal propagation velocities and distances between
cortical sites, muscles, and receptors, as well as time delays
associated with signal transmission times in man-machine
interactions and human interactions �visual, acoustic, haptic�.

Third, due to the sensitivity of the performance variability
on time delays, it might be the case that the functionality of
motor control systems breaks down when time delays are
changed by relatively little amounts. In this context, not only
the sensitivity of the variability plays an important role, but
also the fact that mean energy and degree of disorder �as
measured in terms of entropy� crucially depend on the time
delay. Changing a time delay by a few percent may result in
a change of the mean energy and the degree of disorder by
100 or more percent. All kinds of amplification factors are
possible.

Fourth, the overshoot phenomenon as well as the destabi-
lization resonances suggest—counterintuitively—that it
might be useful for motor control systems to increase time
delays. The reason for this is that due to structural constraints
of the human body, time delays cannot be decreased beyond
certain thresholds. Signals need to travel certain distances
�e.g., from a cortical site in the head to the toe of a foot� and
signals can only travel with particular maximum speeds. If a
motor control system somehow involves a particular time

PATANARAPEELERT et al. PHYSICAL REVIEW E 73, 021901 �2006�

021901-12



delay such that the system operates at the falling edge of a
resonance peak or an overshoot hillock, then it might be
impossible to decrease the time delay by a sufficiently large
amount such that the variances �p

2 and �x
2 become smaller as

the system has been pushed over the resonance peak or the
overshoot hillock. In such situations, the only option that we
have to improve performance and to decrease performance
variability is to increase the time delay.

Finally, we would like to point out that these consider-
ations also shed new light on the wiring of neural pathways.
Since the pathway lengths of a neural network determine
�among other factors� the time delays to which the network
is subjected, the pathway lengths may play a crucial role for
the functioning of a neural network.

VI. CONCLUSIONS

In the present paper, we studied the stochastic properties
of dynamical systems subjected to fluctuating forces and
time-delayed feedback loops that can be described in terms
of linear stochastic delay differential equations of second or-
der. We assumed that the systems can be described in terms
of �generalized� position and momentum variables �x and p�
such that the second-order evolution equations can be re-
garded as Kramers equations with time delay. For this class
of systems, we showed that the stationary distributions are
Gaussian distributions and derived analytical expressions for
the variances �p

2 and �x
2 of the momentum and position vari-

ables. Furthermore, we identified two qualitatively different
parameter regimes by means of the parameters a and b re-
lated to a nondelayed and a time-delayed friction force. In
the first parameter regime given by b
a, stationary distribu-
tions exist for all time delays. In the second parameter re-
gime given by b�a, a more detailed discussion is necessary.
For b�a, we showed that there is set of critical time delays
�u,j and �s,j at which the first moments of x and p become
unstable and become stable again by means of Hopf bifurca-
tions. We showed explicitly that at these Hopf bifurcation
points the variances �p

2 and �x
2 become infinite �for �u,j� to

then become finite again �for �s,j�.
In particular, for b�a, stationary distributions with finite

variances exist for delays � with 0��
�u,0 and �s,j 
�

�u,j+1. Otherwise, they do not exist. That is, we derived a
stochastic description of time-delayed systems that can ex-
hibit re-entrant bifurcations. In line with earlier works on
double Hopf bifurcations �52,53�, we argued that the se-
quence of re-entrant bifurcations is truncated because the
characteristic equations of the corresponding deterministic
systems exhibit imaginary solutions �= ± i� with multiplic-
ity two �double Hopf bifurcation points�. We demonstrated
that the parameter domains in which stationary distributions
exist can be conveniently determined by means of stability
diagrams in the a-� plane that reveal some kind of Christmas
tree structure. For b=a, we found that the variances �p

2 and
�x

2 exhibit an infinite set of singularity points which are re-
lated to the �right hand side� boundary points of the afore-
mentioned Christmas tree stability graphs. For b=a, the criti-
cal delays �u,j and �s,j merge and correspond in the stability
graphs to a set of right hand side boundary points. As a

result, we found that stationary distributions with finite vari-
ances exist for all delays except for delays that correspond to
these boundary points.

Close to the critical line b=a in the parameter space �a ,b�
�i.e., for b=a−� with ��0 small�, the variances �p

2 and �x
2

oscillate as functions of the time delays and exhibit pro-
nounced peaks at regular intervals. These oscillations can be
interpreted in terms of destabilization resonances related to
the oscillatory instabilities that exist in the adjacent param-
eter regime �i.e., for b�a�. In short, we observed time-
delayed destabilization resonances due to oscillatory ghost
instabilities. Similar resonances have recently been found for
the correlation time of trajectories produced by time-delayed
van der Pol oscillators �50�. We may speculate that the cor-
relation time resonances reported in Ref. �50� are related to
the aforementioned ghost instabilities as well.

Finally, we have shown that the variances �p
2 and �x

2 can
feature overshoots. That is, the variances exhibit maxima at
particular time delays �max. These maxima separate the func-
tions �p

2��� and �x
2��� into rising and falling functions for

delays �
�max and ���max, respectively.
We would like to underscore that the aforementioned re-

entrant bifurcations, destabilization resonances and over-
shoots are phenomena that arise due to a dimensionality ef-
fect. In the one-dimensional time-delayed systems �i.e.,
systems described by linear first-order stochastic delay dif-
ferential equations� these phenomena cannot be observed.
Re-entrant bifurcations, destabilization resonances, and over-
shoots can be observed if we add a degree of freedom to the
one-dimensional systems, that is, if we consider two-
dimensional time-delayed systems. For one-dimensional
time-delayed systems, Fig. 1 summarizes the possible quali-
tative dependencies of variances on time delays. For the cor-
responding two-dimensional systems, Fig. 13 depicts the
possible functional dependencies. When the two-dimensional
systems are reduced to one-dimensional ones �which hap-
pens in our case in the limit k→0�, Fig. 13 will be distorted
to recover Fig. 1. Alternatively, we may say that these novel
phenomena arise due to the impact of the harmonic restoring
force F�x�=−kx.

We discussed implications of our theoretical results for
human motor control systems. We reinterpreted previous ex-
perimental studies on time-delayed tracking movements and
showed that experimental findings obtained earlier suggest
that the second-order dynamical model has physical rel-

FIG. 13. Qualitative functional dependencies of variances �p
2 on

time delays � for second-order dynamical models of the form �2�
and �3� �solid line: b�a; dashed line: b
a with b2�a2− �4k /m��.
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evance for both the parameter domain b�a and a�b. In
addition, we made some predictions based on our second-
order dynamical model concerning the stochastic behavior of
human motor control systems. Accordingly, it seems plau-
sible that destabilization resonances, delay-induced minima
of performance variability as depicted in Fig. 13, and over-
shoots could be observed in human motor performance. In
particular, we have emphasized that the rule of thumb, which
states that time delays destabilize systems, does not hold in
general for time-delayed second-order dynamical systems,
see Fig.13 . We would like to point out that our reinterpreta-
tions as well as our predictions have to be verified by future
experimental studies because so far experiments have not
been carried out to test specific predictions from the Kramers
model involving time delays.

At this juncture, it is useful to return also to the issue of
multiplicative versus additive noise. The question arises to
what extent the results derived in Secs. II–V carry over if we
are dealing with motor control systems dominated by multi-
plicative noise. Previous theoretical studies on first-order dy-
namical systems involving time delays and multiplicative
noise �42,45� revealed that multiplicative and additive noise
systems have in common that we can determine �at least by
semianalytical methods� the parameter domains in which sta-
tionary distributions exist. These studies, however, also re-
vealed that the derivation of autocorrelation functions and
variances becomes mathematically involved and in general
leads to a set of time-delayed moment equations that is not
closed. It is reasonable to assume that in the case of second-
order dynamical systems with time delays and multiplicative
noise, a similar situation will be encountered. Most likely
these systems will reveal qualitatively the same behavior in
particular parameter domains as their additive noise counter-
parts. That is, re-entrant bifurcations as depicted in Fig. 13,
destabilization resonances, and overshoots are likely to oc-
cur. Given the current technical difficulties in the analysis of
time-delayed systems with multiplicative noise, two promis-
ing alternative approaches are the study of reducible systems
and the utilization of perturbation theoretical methods. In the
first case, multiplicative noise systems are mapped to addi-
tive noise systems by means of variable transformations. For
systems without time delays, this procedure belongs nowa-
days to the standard literature �60� and has only recently
been generalized to systems involving time delays
�44,49,76�. In the second case, analytical results may be de-
rived for multiplicative noise systems that involve small time
delays or small coupling parameters that describe the impact
of weakly interfering time-delayed feedback loops
�43,67,77�.

This work was financially supported by the Thailand Re-
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APPENDIX A: DERIVATION OF EQ. (30)

To begin with, we note that Eq. �29� can be written as

Z�1���� =
�1 − �2

a + b cos��2��
, �A1�

where

�i = �a + b cos�� j�����ib sin��i�� − �i
2 + �k/m�� . �A2�

Consequently, Eq. �26� becomes

C1
�1���� =

f���
�1 − �2

, �A3�

where

f��� =
Q

2
��a − b

�1
2 cos��1�� − �2

2 cos��2��
�1

2 − �2
2 
�a

+ b cos��2��� − bB�1�����b�2 sin��2�� − �2
2 + �k/m��
 .

�A4�

Using Eq. �24� in terms of

�i
�b2 − a2 = �i

2 −
k

m
, �A5�

the first term of f��� becomes

1

�1
2�2

2 ��1
2�a − b cos��1����a + b cos��2���

− �2
2�a2 − b2cos2��2���� . �A6�

The second term of f��� becomes

1

�1
2 − �2

2 ��2
2�b2 sin2��2�� − �b2 − a2�� − �1�2�b sin��1��

+ �b2 − a2��b sin��2�� − �b2 − a2�� . �A7�

With the help of the trigonometric relation

a2 − b2 cos2��i�� = b2 sin2��i�� − �b2 − a2� , �A8�

we obtain

f��� =
Q

2��1
2 − �2

2�
��1

2�a − b cos��1����a + b cos��2���

− �1�2�b sin��1�� + �b2 − a2��b sin��2�� − �b2 − a2�� .

�A9�

Using

a − b cos��1�� =
a2 − b2 cos2��1��

a + b cos��1��
�A10�

and Eq. �A8�, we then have

f��� =
Q

2��1
2 − �2

2�
�b sin��1�� + �b2 − a2

a + b cos��1�� 
��1 − �2� .

�A11�

From Eqs. �A3� and �A11�, we conclude that Eq. �30� holds.

APPENDIX B: DERIVATION OF EQ. (43)

For the underdamped case, that is, for b
a and b2�a2

− �4k /m�, we use the autocorrelation function
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C�2��z� = C1
�2� cosh��1z� + e1

�2� sinh��1z� + C2
�2� cosh��2z�

+ e2
�2� sinh��2z� , �B1�

where �1,2=u±vi are complex values with v�0. Conse-
quently, we obtain for C1

�2�, C2
�2�, e1

�2�, and e2
�2� the same for-

mal expressions as for C1
�3�, C2

�3�, e1
�3�, and e2

�3�. The hyper-
bolic functions in Eq. �B1� read like

cosh��1�� = cosh�u��cos�v�� + i sinh�u��sin�v�� ,

cosh��2�� = cosh�u��cos�v�� − i sinh�u��sin�v�� ,

sinh��1�� = sinh�u��cos�v�� + i cosh�u��sin�v�� ,

sinh��2�� = sinh�u��cos�v�� − i cosh�u��sin�v�� , �B2�

and we see that �1=�2
*, cosh��1��= �cosh��2���* and

sinh��1��= �sinh��2���*, where the star denotes the complex
conjugate. Applying these relations to the parameters e1

�2�

=e1
�3� and e2

�2�=e2
�3� defined in Sec. II B, we find e1

�2�= �e2
�2��*.

Since C�z� is a real-valued function, it is clear from Eq. �B1�
that C1

�2�= �C2
�2��*. Consequently, the variance of p can be

written as

�p
2�2� = C�2��0� = 2 Re�C1

�2�� . �B3�

We put C1
�2�=C1

�3�, where C1
�3� is given by Eqs. �36�–�38�.

Next, we substitute the relations �B2� into Eqs. �36�–�38�.
Thus, we obtain the complex-valued parameter C1

�2�. Taking
the real part and multiplying with the factor 2, we obtain Eq.
�43�, where

A1 = �a + b cosh�u��cos�v����2uv − b�v sinh�u��cos�v��

+ u cosh�u��sin�v���� − b sinh�u��sin�v���2u2

+ b�v cosh�u��sin�v�� − u sinh�u��cos�v���� ,

A2 = − 2uv + b�v sinh�u��cos�v�� + u cosh�u��sin�v��� ,

A3 = 2uv + b�v sinh�u��cos�v�� + u cosh�u��sin�v��� ,

A4 = 2uv�a − b cosh�u��cos�v��� − b�u2 − v2�sinh�u��sin�v�� .

�B4�

APPENDIX C: SPECIAL CASES

1. Case a=b�0

In order to discuss the case a=b, we exploit the results
previously derived in Sec. II B. That is, we consider the lim-
iting case b→a+ for b�a. We write the variance of p given
by Eq. �31� in the form

�p
2�1���� =

bQB�1����
2�a + b cos��2����B�1����

+ ����
�cos��2�� − cos��1���

Z�1���� 
 , �C1�

where ���� is defined by

���� = a − b
�1

2 cos��1�� − �2
2 cos��2��

�1
2 − �2

2

− bB�1����
b�2 sin��2�� − �2

2 + �k/m�
a + b cos��2��

. �C2�

From Eq. �24�, it can be seen that

�1 =� k

m
= �0,

�2 = −� k

m
= − �0 �C3�

in the limit b→a+. In addition, we find

lim
b→a+

B�1���� =
2�0 + a��0 cos��0�� + a sin��0��

2�0a
, �C4�

lim
b→a+

Z�1���� = 0, �C5�

and

lim
b→a+

���� =
sin��0��

2�1 + cos��0���
�a sin��0�� + a�0� − 2�0� .

�C6�

Furthermore, the most right standing term in Eq. �C1� yields

lim
b→a+

�cos��2�� − cos��1���
Z�1����

=
� sin��0��

�a�0 − 2�0 + a sin��0��
.

�C7�

Using Eqs. �C4�, �C6�, and �C7�, we obtain

lim
b→a+

�p
2�1���� =

Q

4�1 + cos��0���


�2�0 + a��0 cos��0�� + a sin��0��
�0a

+ ��1 − cos��0���
 . �C8�

Consequently, we have

lim
b→a+

�x
2�1���� =

1

km�0
� lim

b→a+
�p

2�����0 − a sin��0���

+
Q

4
�a sin��0��
 . �C9�

2. Case k=0

Finally, the variances obtained in previous studies on sys-
tems with overdamped first-order dynamics �40,41� will be
compared with the variances derived from the Kramers equa-
tions �2� and �3� in the special case k=0. For k=0, Eq. �3�
becomes the first-order stochastic delay differential equation
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�5�. In Refs. �40,41�, it has been shown that the stationary
probability density of p is given by Eq. �6�, and that the
variance of p has the form

�p
2 =�

Q

2
�1 + b�−1 sin����

a + b cos���� 
 , b � a � 0

Q

2
�1 + b�−1 sinh����

a + b cosh���� 
 , a � b � 0

Q

4a
�1 + a�� , a = b � 0

� �C10�

where �=��a2−b2�. Now, let us derive Eq. �C10� from the
results presented in Sec. II B. First, we consider the case b
�a�0 and k=0. From Eq. �24�, we have �1=�b2−a2=�
and �2=0. Consequently, C1

�1� given by Eq. �30� becomes

C1
�1� =

Q

2
�1 + b�−1 sin����

a + b cos���� 
 . �C11�

From Eq. �28� it is clear that B�1����=b−1�1+� /b sin�����.
As a result, Eq. �27� reduces to

C2
�1���� =

Q/2�1 + �/b sin����� − �a + b cos�����C1
�1����

a + b
.

�C12�

Using Eq. �C11�, we see that C2
�1����=0. From Eq. �31�, it

then follows that

�p
2�1���� = C1

�1���� =
Q

2
�1 + b�−1 sin����

a + b cos���� 
 . �C13�

Similarly, for the overdamped case �b
a, b2
a2− �4k /m��
it is easy to verify that for k→0, the variance �41� reduces to

�p
2�3� =

Q

2
�1 + b�1

−1 sinh��1��
a + b cosh��1��


 , �C14�

with �1=�a2−b2=�. Finally, we consider the case a=b�0.
If k=0, then from Eq. �C3� we have �0=0. Substituting �0
=0 into Eq. �C8�, we obtain

lim
b→a+

�p
2�1���� =

Q

4a
�1 + a�� . �C15�
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